

Published on Web 06/02/2007

Reactivity of a Disilyne RSi \equiv SiR (R = Si^{*i*}Pr[CH(SiMe₃)₂]₂) toward π -Bonds: Stereospecific Addition and a New Route to an Isolable 1,2-Disilabenzene

Rei Kinjo,[§] Masaaki Ichinohe,[§] Akira Sekiguchi,^{*,§} Nozomi Takagi,[‡] Michinori Sumimoto,[‡] and Shigeru Nagase[‡]

Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan, and Department of Theoretical Molecular Science, Institute for Molecular Science, Okazaki 444-8585, Japan

Received April 20, 2007; E-mail: sekiguch@chem.tsukuba.ac.jp

Recently, numerous multiple bond species containing heavier group 14 elements have been isolated and characterized.¹ In particular, considerable interest has been focused on the nature of alkene analogues of silicon² because of their unusual structures and bonding since the isolation of a stable tetramesityldisilene by West and co-workers.³ In many cases, the π bond of the disilenes has displayed an increased reactivity toward many reagents, compared with that of alkenes and alkynes, because of the relatively small HOMO-LUMO gap and its biradical character.⁴ For example, the π bond of disilenes is known to undergo smooth [2 + 2]cycloadditions toward alkenes and alkynes to give the disilacyclobutane and disilacyclobutene derivatives, respectively.^{1,2} On the other hand, much less is known about the π bond nature of disilynes with a silicon–silicon triple bond, which has two distinct π bonds $(\pi_{in} \text{ and } \pi_{out})$,^{5,6} although a few papers have described the reactivity of alkyne analogues.7 Now, a comparison of the chemical behavior of heavier group 14 element alkyne analogues with that of alkynes is of special interest. To understand the nature of the π bond of a silicon-silicon triple bond, we have examined the reaction of disilyne 1^{5a} with alkenes and alkynes. In this paper, we present the results of the stereospecific cycloadditions of 1 to 2-butenes,8 together with those of the cycloaddition of 1 to phenylacetylene to give an isolable 1,2-disilabenzene derivative. Furthermore, we report theoretical studies on the mechanism of the reactions, showing that these reactions involve in the initial step [1 + 2] cycloaddition (the interaction between the LUMO (π_{in}^*) of 1 and the HOMO of 2-butenes or acetylene), instead of a direct [2 + 2] cycloaddition.

When a hexane solution of disilyne **1** was treated with an excess of *cis*-2-butene at room temperature, *cis*-3,4-dimethyl-1,2-disilacyclobutene **2a** was obtained as the sole product in 89% yield (Scheme 1).⁹ This reaction proceeded cleanly and was complete within 30 min. On the other hand, the reaction of **1** with *trans*-2butene under the same conditions produced *trans*-3,4-dimethyl-1,2disilacyclobutene **2b** as yellow crystals in 85% yield.⁹ In contrast to the reaction with *cis*-2-butene, it took 1 day to complete this reaction. Most importantly, both reactions proceeded stereospecifically, as was determined by NMR spectra and X-ray analysis (for **2b**).⁹ Although an excess of 2-butenes was used in both reactions, the subsequent cycloaddition reaction was not observed.

To gain a mechanistic insight, we have performed theoretical calculations of the reaction of disilyne **1** with 2-butenes. Figure 1 shows the energy profile along the reaction path calculated at the B3LYP/[Si, 6-311+G(2df); C and H, 6-31G(d)]//B3LYP/3-21G* level.¹⁰ The interaction between the in-plane LUMO (π_{in}^*) of **1** and the HOMO of 2-butene, resulting in [1 + 2] cycloaddition, is the first step in both reactions to produce the silacyclopropyl–

Figure 1. Energy profile for the reaction of 1 with 2-butenes ($R = Si^{2}Pr[CH(SiMe_{3})_{2}]_{2}$). Transition sates and intermediates are shown for *trans*-2-butene. Red line, reaction pathway for *trans*-2-butene; blue line, reaction pathway for *cis*-2-butene.

Scheme 1

silylene intermediate (Int1).¹¹ The alternative interaction between the out-of-plane HOMO (π_{out}) of 1 and the LUMO of 2-butene is unfavorable because of the larger steric repulsion between 2-butene and the Si'Pr[CH(SiMe_3)_2]_2 group of 1. Because the first step is rate-determining, the reaction with *trans*-2-butene, which has a higher energy barrier ($\Delta E = +23.2 \text{ kcal/mol}$), requires a longer reaction time than the reaction with *cis*-2-butene ($\Delta E = +18.4 \text{ kcal/}$ mol). The difference in the heights of the energy barriers is attributed to the degree of steric repulsion between the Me group of 2-butene and the Si'Pr[CH(SiMe_3)_2]_2 group of 1. Finally, rotation of the Si-Si bond through TS2 followed by the intramolecular insertion of the silylene (Int2) into the neighboring Si-C bond with retention of the stereoconfiguration completes the formation of products 2a,b.

We have also examined the reaction of **1** with an alkyne, hoping to synthesize the 1,2-disilacyclobutadiene derivative by [2 + 2]cycloaddition.¹² When a hexane solution of **1** was treated with an excess of phenylacetylene at room temperature, the 1,2-disilabenzene derivative **3** was obtained as a mixture of two regioisomers (**3a**/**3b** = 2:3), isolated as yellow crystals in 63% overall yield

Figure 2. ORTEP drawing of **3a** (30% thermal ellipsoids). Hydrogen atoms except for the central ring are omitted for clarity. Selected bond lengths (Å): Si1-Si2 = 2.2018(18), Si2-C3 = 1.799(5), C3-C4 = 1.389(6), C4-C5 = 1.452(6), C5-C6 = 1.386(6), Si1-C6 = 1.804(4), Si1-Si3 = 2.3828(18), Si2-Si4 = 2.3730(16), Selected bond angles (deg): <math>Si1-Si2-C3 = 103.00(15), Si2-C3-C4 = 133.2(4), C3-C4-C5 = 123.8(4), C4-C5-C6 = 124.1(4), C5-C6-Si1 = 133.2(3), C6-Si1-Si2 = 102.68(16), Si1-Si2-Si4 = 144.61(7), C3-Si2-Si4 = 112.22(15), Si2-Si1-Si3 = 144.81(7), C6-Si1-Si3 = 112.25(16).

Scheme 2

(Scheme 2).^{12,13} No reaction occurred with diphenylacetylene. This is the first example of stable 1,2-disilabenzene derivatives, although the isolation of some stable monosilaaromatic compounds,¹⁴ as well as the chemical trapping of intermediary 1,4-disilabenzene and its observation by UV/vis spectroscopy in an Ar matrix at 10 K,¹⁵ have already been reported.

In the ²⁹Si NMR spectrum of **3**, the low-field shifted signals (99.2 ppm for **3a**, 99.4 and 106.8 ppm for **3b**) characteristic of sp²-Si were observed. The signals of ring protons (8.47 ppm for **3a**, 8.01, 8.61 ppm for **3b**) as well as ring carbons (147.8 and 150.6 ppm for **3a**, 141.6, 146.4, 149.6, and 161.3 ppm for **3b**) were observed in a typical aromatic region.

Single crystals of 3a were obtained by recrystallization from a mixture of pentane-toluene, and its crystal structure is shown in Figure 2. The 1,2-disilabenzene ring of 3a is almost planar, and the sum of the bond angles around the two skeletal Si atoms is 359.74 and 359.83° for Si1 and Si2, respectively. The dihedral angle between the 1,2-disilabenzene ring and each phenyl group is ca. 54°. The length of the Si1-Si2 bond is 2.2018(18) Å, which is intermediate between the Si-Si single and double-bond lengths.¹⁶ The lengths of Si1-C6 and Si2-C3 were found to be essentially equal to each other (1.804(4) and 1.799(5) Å, respectively), and they are intermediate between those of Si-C single and doublebond lengths.¹⁶ Furthermore, the C3–C4 and C5–C6 bond lengths, which are also equal to each other (1.389(6) and 1.386(6) Å, respectively), are similar to the C-C bond length of the benzene ring (1.39-1.40 Å).17 The C4-C5 bond length of 1.452(6) Å is different from that of the C-C bond length in the benzene ring, but is intermediate between those of C-C single and double-bond lengths (1.54 and 1.34 Å, respectively). Thus, it has been experimentally demonstrated that 1,2-disilabenzene has some contribution from the 6π aromatic delocalization, similar to the cases of benzene and monosilabenzene.14,18 Indeed, NICS values, recognized as an aromaticity probe, were calculated for the model compounds 3a' and 3b' (Me₃Si groups instead of SiⁱPrDsi₂) at 1 Å above the center of the ring: NICS(1) = -8.0 for 3a' and -8.1for **3b'** (cf. NICS(1) for benzene = -10.6).¹⁹

According to the theoretical calculation, the first step in the formation of 1,2-disilabenzene is the generation of a 1,2-disilacyclobutadiene-like intermediate. Then, the [2 + 4] cycloaddition reaction between this intermediate and a second acetylene molecule will take place to give 1,2-disila-Dewar benzene, followed by its valence isomerization to form the final 1,2-disilabenzene (see the Supporting Information).

Supporting Information Available: The experimental procedures of **2a**, **2b**, **3a**, and **3b**; table of crystallographic data including atomic positional and thermal parameters for **2b** and **3a** (PDF/CIF); calculated energies of transition states and intermediates for the reaction of **1** with acetylene. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- For recent reviews, see: (a) Power, P. P. Chem. Rev. 1999, 99, 3463. (b) Power, P. P. Chem. Commun. 2003, 2091.
- (2) (a) Brook, A. G.; Brook, M. A. Adv. Organomet. Chem. 1996, 39, 71.
 (b) Okazaki, R.; West, R. Adv. Organomet. Chem. 1996, 39, 231. (c) Weidenbruch, M. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 2001; Vol. 3, Chapter 5. (d) Weidenbruch, M. Organometallics 2003, 22, 4348. (e) Lee, V. Ya.; Sekiguchi, A. Organometallics 2004, 23, 2822.
- (3) West, R.; Fink, M. J.; Michl, J. Science 1981, 214, 1343.
- (4) Teramae, H. J. Am. Chem. Soc. 1987, 109, 4140.
- (5) Disilyne RSiSiR, (R = SiⁱPr[CH(SiMe₃)₂]₂): (a) Sekiguchi, A.; Kinjo, R.; Ichinohe, M. Science 2004, 305, 1755. (b) Sekiguchi, A.; Ichinohe, M.; Kinjo, R. Bull. Chem. Soc. Jpn. 2006, 79, 825. (c) Kravchenko, V.; Kinjo, R.; Sekiguchi, A.; Ichinohe, M.; West, R.; Balazs, Y. S.; Schmidt, A.; Karni, M.; Apeloig, Y. J. Am. Chem. Soc. 2006, 128, 14472. (d) Kinjo, R.; Ichinohe, M.; Sekiguchi, A. J. Am. Chem. Soc. 2007, 129, 26.
- (6) Disilyne RSiSiR, (R = SiMe(Si'Bu₃)₂): (a) Wiberg, N.; Niedermayer, W.; Fischer, G.; Nöth, H.; Suter, M. Eur. J. Inorg. Chem. 2002, 1066. (b) Wiberg, N.; Vasisht, S. K.; Fischer, G.; Mayer, P. Z. Anorg. Allg. Chem. 2004, 630, 1823.
- (7) (a) Pu, L.; Phillips, A. D.; Richards, A. F.; Stender, M.; Simons, R. S.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2003, 125, 11626. (b) Cui, C.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 2004, 126, 5062. (c) Cui, C.; Olmstead, M.; Fettinger, J. C.; Spikes, G. H.; Power, P. P. J. Am. Chem. Soc. 2005, 127, 17530. (d) Power, P. P. Appl. Organomet. Chem. 2005, 19, 1312. (e) Sugiyama, Y.; Sasamori, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 1023.
- (8) Wiberg et al. reported the reaction of a disilyne with ethylene to produce a 1,2-disilacyclobutene derivative; however, the reaction mechanism and the stereochemistry were not considered (see ref 6b).
- (9) For the experimental procedures and spectral data of 2a and 2b and the crystal data of 2b see the Supporting Information.
- (10) Calculations were carried out using the Gaussian 03 program. Geometry optimization at the B3LYP/3-216* level well reproduced the structural parameters for the disilyne 1 of the experimental values, see: Takagi, N.; Nagase, S. J. Organomet. Chem. 2007, 692, 217.
- (11) The disilyne **1** has the two highest occupied MOs (π_{in} for HOMO 1 and π_{out} for HOMO) and the two lowest unoccupied MOs (π^*_{in} for LUMO and π^*_{out} for LUMO + 1) (see ref 5a).
- (12) Power recently reported the reaction of the digermyne ArGeGeAr (Ar = C_6H_3 -2,6-(2,6-Pr_2C_6H_3)_2) with diphenylacetylene to produce the 1,2-digermacyclobutadiene derivative (see ref 7b and 7c). With benzonitrile, the formation of 1,4-diaza-2,3-digermabenzene derivative incorporating two PhCN units was reported (see ref 7c).
- (13) For the experimental procedures and spectral data of **3a** and **3b** and the crystal data of **3a** see the Supporting Information.
- (14) For recent reviews on stable silaaromatic compounds, see: (a) Tokitoh, N. Acc. Chem. Res. 2004, 37, 86. (b) Tokitoh, N. Bull. Chem. Soc. Jpn. 2004, 77, 429.
- (15) (a) Rich, J. D.; West, R. J. Am. Chem. Soc. **1982**, 104, 6884. (b) Maier, G.; Schöttler, K.; Reisenauer, H. P. Tetrahedron Lett. **1985**, 26, 4039. (c) Kabe, Y.; Ohkubo, K.; Ishikawa, H.; Ando, W. J. Am. Chem. Soc. **2000**, 122, 3775.
- (16) Kaftory, M.; Kapon, M.; Botoshansky, M. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: Chichester, U.K., 1998; Vol. 2, Chapter 5.
- (17) Minkin, V. J.; Glukhovtsev, M. N.; Simkin, Y. B. Aromaticity and Antiaromaticity; Electronic and Structural Aspects; Wiley: New York, 1994.
- (18) (a) Wakita, K.; Tokitoh, N.; Okazaki, R.; Nagase, S. Angew. Chem., Int. Ed. 2000, 39, 634. (b) Wakita, K.; Tokitoh, N.; Okazaki, R.; Takagi, N.; Nagase, S. J. Am. Chem. Soc. 2000, 122, 5648.
- (19) Schleyer, P. v. R.; Manoharan, M.; Wang, Z.-X.; Kiran, B.; Jiao, H.; Puchta, R.; Hommes, N. J. R. v. E. Org. Lett. 2001, 3, 2465.

JA072759H